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Water entry and exit of horizontal
circular cylinders

B y Martin Greenhow and Simiso Moyo
Department of Mathematics and Statistics, Brunel University, Uxbridge,

Middlesex UB8 3PH, UK

This paper describes fully nonlinear two-dimensional numerical calculations of the
free-surface deformations of initially calm water caused by the forced motion of
totally or partially submerged horizontal circular cylinders. The paper considers the
following.

(i) Totally submerged cylinders moving with constant velocity in vertical, hori-
zontal or combined motions. Results are compared with the small-time asymptotic
solution obtained by Tyvand & Miloh in 1995. Their results, which are taken to
third-order (which is when gravity terms first appear in the expansions), are in ex-
cellent agreement with the numerical calculations for small times; beyond this only
the numerical method gives accurate results until the free surface breaks or the cylin-
der emerges from the free surface. Breaking can occur during exit due to strongly
negative pressures arising on the cylinder surface, or during the downwards motion
causing a free-surface depression which closes up rapidly, forming splashes. Down-
wards motion is also shown to give rise to high-frequency waves in some cases.

(ii) The free-surface deformations, pressures and forces acting on a cylinder in
vertical or oblique forced motion during engulfment when it submerges from being
initially half-submerged. The initial stages, when the cylinder still pierces the free
surface, specify the initial conditions for a separate program for a completely sub-
merged body, thereby allowing complete engulfment to be studied. The free surface
closes up violently over the top of the cylinder resulting in jet flow, which, while
difficult to handle numerically, has been shown to be insignificant for the bulk flow
and the cylinder pressures and forces.

1. Introduction

The two-dimensional interaction of solid bodies with the free surface is of major
importance in many engineering contexts, especially in ocean and coastal engineer-
ing, since it usually represents worst-case design loading. Examples in these fields
include wave loading in the splash zone on oil rigs, marine operations where units
are lowered from a crane ship through the free surface, earthquake and other ex-
treme loading on floating bridges and dams, interaction of waves with pipelines,
impact of sloshing fluid on baffles in tanks, impact of steep waves on breakwaters
and other fixed structures such as wave energy devices, ship slamming and extreme
ship motions. The physical and mathematical modelling of the situations is complex,
involving body elasticity, air and air/water mixture compressibility effects, at least
in the early stages of impact, and viscous effects causing vortex shedding in the later
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stages. The experimentalist faces difficult problems of sensitivity to initial conditions
and repeatability for the early stages, and scaling for all stages of the fluid-structure
interaction. In particular, the energy in the fluid, expressed in terms of the added
mass, is strongly dependent on the cylinder’s proximity to the fluid boundary, see
Bassett (1888) and Greenhow & Li (1987), and this gives rise to inviscid forces which
are proportional to the body velocity squared; this makes it difficult, or impossible,
to separate viscous loading (also proportional to v2 according to Morison’s equation)
which requires Reynold’s scaling, from the inviscid loading, which requires Froude
scaling.

It is therefore necessary to simplify the problem before attempting any analyti-
cal or numerical solution. We here consider only the inviscid loading, due to two-
dimensional fluid motion in the vertical plane, on horizontal circular cylinders moving
in initially calm deep water, but we do not make any further linearising assumptions
on the free-surface or body boundary conditions. In particular, we study the exit of
the body as well as the entry phase. In some ways the exit phase is less amenable
to theoretical treatment (gravity cannot be ignored for example), but is nevertheless
important since it can give rise to appreciable hydrodynamic forces which may affect
the body motion and therefore the subsequent slamming forces and pressures upon
re-entry in the case of ship slamming in extreme ship motions; see Barringer (1996).

The submerged circular cylinder/free surface interaction problem has a long his-
tory dating at least from Havelock’s work (1936, 1949a,b) on impulsively started
constant velocity or accelerated horizontal motion. The time-dependent free surface
is linearized and the cylinder represented as a dipole moving beneath it, giving rise to
an image dipole above the free surface and an explicit memory integral over the previ-
ous cylinder motion arising from previously generated radiated waves. This memory
term in the velocity potential gives rise to steady forces and transient oscillatory
forces on the body, both of which are only qualitatively correct when compared with
fully nonlinear calculations of the type considered here, see Haussling & Coleman
(1979), Hepworth (1991) and Greenhow (1993). The large-time asymptotic form of
the oscillatory forces are corrected by Lui & Yue (1996), giving results which are
in close agreement with their direct numerical calculations. For vertically moving
cylinders, Sakai et al. (1933) considered a vertically moving dipole as a model, but
when it is near the free surface the large free-surface deformations make the assumed
linearized boundary conditions there invalid. Tuck (1965) considered the horizontal
motion steady state problem correct to second order in wave steepness, while Tyvand
& Miloh (1995a, b) considered the dipole moved impulsively in any direction under
a fully nonlinear free surface.

An alternative approach is to consider the linearized frequency-domain model
usually used in ship hydrodynamics. Early papers by Dean (1948), Ursell (1950),
Ogilvie (1963), Evans et al. (1979) and others, solved the steady-state sinusoidal
problems of waves diffracting over a fixed body, or that of a moving body radiating
waves in otherwise calm water. The diffraction and radiation problems have been
solved to second order in wave steepness by, for example, Ogilvie (1963) and Wu
(1993), respectively.

The above approaches are useful when considering the loads on a marine structure
under normal working conditions, but fail to give accurate results for the extreme
situations considered here. What is needed is a method which accounts correctly
for both the nonlinearity of the free-surface boundary conditions, and the fact that
the body condition, while appearing to be linear, must be applied not on the ‘mean’
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position of the body surface, but on its actual position (which for free motion will not
be known a priori). This second requirement means that series expansion methods
which apply boundary conditions on the initial body surface position are only valid
for small times after the motion has started. The impulsively started constant velocity
or constantly accelerated motion of a vertical wavemaker has been studied using
such series expansions by Peregrine (unpublished note) and King & Needham (1994),
whilst the corresponding problems for a submerged circular cylinder have been solved
to third-order by Tyvand & Miloh (1995a, b), see below.

These solutions form the basis for accurate comparisons with free-surface profiles
calculated by the numerical method for submerged or surface-piercing bodies given
below, based on the work of Vinje & Brevig (1981a,b), followed by Brevig et al. (1981),
Telste (1987), Greenhow (1987), Terent’ev (1991), Hepworth (1991) and Greenhow
(1993). Although no direct comparison with experiments has yet been attempted,
the results of both numerical and analytical methods are qualitatively very similar
to the photographs taken by Greenhow & Lin (1983) for both the horizontal motion
of the wavemaker, and the vertical motion of cylinders (up and down) and wedges
(downwards only). For such wedge entry at high Froude number (neglecting gravity),
the flow is known to be self-similar, see Wagner (1932), and Howison et al. (1991) for
a modern treatment. Self-similarity implies that the arc length between free-surface
Lagrangian marker particles is conserved, (Garabedian 1953; Fraenkel, this volume);
this provides a stringent check on the accuracy of the present numerical method
(Greenhow 1987). It was found that the numerical method for surface-piercing bodies
of Vinje & Brevig (1981a) gives accurate results if the initial deadrise angle (between
the fluid and body surfaces at their intersection) is not smaller than about 45◦, and
we do not violate this restriction in the present calculations. For smaller deadrise
angles, Zhao & Faltinsen (1993) have given accurate results for the body forces and
pressures, but they cut off the ejected spray jets in their numerical scheme. This
procedure is sensible since the jets are thin and have almost atmospheric pressure
throughout; we adopt a similar procedure here to remove jets which would otherwise
cause numerical breakdown.

2. Numerical Methods

The numerical methods used are based on the work of Longuet-Higgins & Cokelet
(1976) and Vinje & Brevig (1981a,b). Those authors point out that since the irro-
tational, incompressible flow is two-dimensional, it may be described by either the
velocity potential φ or a stream function ψ, or, most fundamentally, by a complex
velocity potential β = φ+ iψ which is then analytic in the fluid region. This means
that Cauchy’s theorem holds for any contour lying within, or at the boundary of,
the fluid. Choosing a contour C around the boundary therefore results in∮

C

β(z)
z − z0

dz = 0, (2.1)

where z0 lies outside C. Now C may be split into two parts: Cφ where φ is known
and Cψ where ψ is known, see figure 1; these quantities are either specified initially
or known from the evolution equations below. Thus φ and its time derivative are
known on the free surface (Dφ/Dt is given from the Bernoulli equation), while ψ
and its time derivative are known on the bottom (both vanish here) and on a body
surface (ψ and ∂ψ/∂t are here specified by the body geometry and its velocity or
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Figure 1. Contours of integration for the submerged (a) and surface-piercing (b) body cases.

acceleration, respectively). Letting z0(= x0 +iy0) approach the contour C, and using
either the real or imaginary parts of equation (2.1), gives integral equations of the
second kind:

πψ(x0, y0, t) + Re
[ ∫

C

φ+ iψ
z − z0

dz
]

= 0 (2.2)

for z0 on Cφ, and

πφ(x0, y0, t) + Re
[
i
∫
φ+ iψ
z − z0

dz
]

= 0 (2.3)

for z0 on Cψ. Similar equations hold for the time derivative of β. We have further
assumed that C is smooth; at corners, either due to the presence of a solid body or
due to discretization of C, we use the angle θ subtended by the collocation points
in place of π in these equations. On the vertical boundaries in figure 1, we apply
periodicity for convenience, but the precise condition here is not relevant for the
present short time calculations since they are placed so far away from the body that
no noticeable waves ever reach them during the time of the calculations.

To step forward in time we use the boundary conditions for the two-dimensional
free-surface problem. Following Longuet-Higgins & Cokelet (1976), we write the free
surface conditions following a free-surface particle (a Lagrangian description of the
flow) as

Dz

Dt
= u+ iv = w∗ =

∂β

∂z
, (2.4)

DΦ
Dt

= ww∗ − gy − Ps
ρ
, (2.5)

where g is the gravity, ρ is the density, ∗ denotes complex conjugate, and the material
derivative is given by

D( )
Dt

=
∂( )
∂t

+∇φ · ∇( ). (2.6)

These equations are used to evolve the position and value of φ of the free-surface
particles to the next time step. Specifically a single step Runge–Kutta method is used
to calculate the first three steps, after which we may use a fourth-order Hamming
predictor/corrector method. A numerical spatial derivative of β is calculated. The
forces on the body are calculated by integrating the hydrodynamic pressure, given by
Bernoulli’s equation, over its surface. For further details see Vinje & Brevig (1981),
and Brevig et al. (1981).

The integral equations for the unknown part of β are solved in the physical plane
by using the collocation method and the integrals are evaluated assuming a linear
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variation between the collocation points. This results in an N ∗ N matrix equation
AX = B for the unknown part X of β at each of the N collocation points. The
elements of the N ∗ N matrix A consist of logarithmic terms, requiring typically
40% of the calculation time for their evaluation. However, the matrix is also used
at each time step for the calculation of the unknown part of Dβ/Dt, and could also
be used for the calculation of higher derivatives of β, as in the Dold & Peregrine
(1986) method. For surface-piercing bodies this is unlikely to be an advantage since
the number of collocation points, and hence equations, changes continuously as the
body becomes more or less submerged. This also means that iterative schemes for
solving the matrix equation are difficult to program, and we use direct Gaussian
elimination at each time-step. Another possible refinement used by other authors
is to map C in the fluid domain to a closed contour in a mapped plane, thereby
avoiding the need to place collocation points down the vertical boundaries (which
must be periodic); this does not seem feasible for the general contour geometries
needed here.

For surface-piercing bodies a problem occurs at the intersections of the free and
body surfaces. Except in special cases, the complex velocity potential β or its time
derivatives are known to be singular here (see Roberts 1987; Vinje 1989). The intro-
duction of viscosity may, in principle, be needed. In the present formulation, we have
both φ and ψ specified at these points. Although no theoretical justification exists, we
remove the two intersection points from the calculations and solve an (N−2)∗(N−2)
system of equations. Then, treating the intersection points as ordinary free-surface
points for the purposes of time-stepping appears to give acceptable results, see Lin
et al. (1984) for the wavemaker problem and Greenhow (1987, 1988) for wedge and
cylinder entry.

For submerged bodies, we do not, of course, have the above intersection point
problems. However, a difficulty does arise with the integration around the contour,
which now involves a branch cut. We account for this when integrating around inner
and outer contours in figure 1. Furthermore, for a fixed body, we do not know the
value of ψ on its surface, but it is constant at each time-step. Therefore integrating
around the cylinder gives∫

cyl

iψ
z − z0

dz = iψ
∫

cyl

dz
z − z0

= 0, (2.7)

when z0 is outside the cylinder, and

Re
[
i
∫

cyl

iψ
z − z0

dz
]

= Re[iπψ] = 0, (2.8)

when z0 is on the cylinder. Thus the unknown constant value of ψ is immaterial, but
may be calculated around the cylinder from equation (2.2) as a check. For the moving
cylinders considered here, we do know the variation of ψ around the cylinder from
the body boundary condition to within this unknown constant value (see Brevig et
al. (1981) for details).

3. Free-surface deformations caused by totally submerged cylinders

A major objective of the present work is to compare results from the fully nonlinear
numerical scheme applied to an impulsively started constant velocity submerged
horizontal circular cylinder of radius a, with those from the small-time expansion
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method of Tyvand & Miloh (1995a, b). The reader is referred to that paper for full
details, but it is necessary here to outline some of the main results and terminology.
The expansion variable T = Ut/d, where U is the cylinder speed, t is (real) time
and d is the initial cylinder centre depth, is assumed small, whereas the parameters
ε = a/d and Fr = v/

√
ag, which represents a dimensionless Froude number, are not

constrained.
The boundary-value problem is solved subject to the cylinder starting with im-

pulsive velocity at t = 0. This gives rise to a velocity potential which is assumed to
be of the form

φ = H(t)[φ0 + tφ1 + t2φ2 + t3φ3 + . . .], −∞ < t <∞, (3.1)

which gives rise to the free-surface elevation

η = H(t)[η0 + tη1 + t2η2 + t3η3 + . . .], −∞ < t <∞, (3.2)

where we note that the free surface is explicitly a single-valued function of the
horizontal coordinate x, so that overturning is prohibited. The functions ηn where
n = 0, 1, 2, 3, . . . are given by closed-form, but rather complicated expressions: η0 = 0
since the free-surface is initially flat, η1 represents a displacement arising from the
impulsive velocity potential Φ0, whilst η2 arises from two sources of nonlinearity,
namely nonlinear terms in the free-surface condition and a geometric nonlinearity
arising from the need to apply the body boundary condition on the displaced body
surface. Finally η3 gives the leading-order effect due to gravity which arises from
the second-order velocity potential φ2 being inserted into the expanded free-surface
condition.

In an effort to specify the domain of applicability of Tyvand & Miloh’s solution,
we have conducted extensive comparisons with the numerical method for various
cylinder velocities. In particular we wanted to answer the question of how small the
dimensionless time variable has to be in order for the expansions to give accurate, or
even meaningful results, since it would be extremely difficult to extend the expansion
to higher orders. Detailed comparisons of the free-surface deformations for various Fr,
initial submergence depths and cylinder radii are shown in figures 2 and 3. Further
diagrams may be found in Moyo (1997) for ε = 0.2, 0.4, 0.8 and 0.95, and Fr =
0.2, 0.39 and 0.78 in vertical, oblique and horizontal motions; we use all this data to
draw general conclusions below. (The actual values of the parameters are determined
by full-scale design specifications, but may be considered to be arbitrary here.)

Figure 2 shows the free-surface deformations caused by a large cylinder moving
vertically upwards in close proximity to the free surface. Even in this rather ex-
treme test, the expansion method gives excellent agreement up to about T = 0.4
and then rapidly deteriorates, becoming topologically impossible for the upwards
vertical motion case at T = 0.6 when the predicted free surface moves inside the
cylinder. The numerical scheme, on the other hand, shows no such behaviour, and
the motion may be followed for considerably longer, until T = 1.0 when the free
surface spontaneously breaks due to rapidly increasing negative pressure building
up on the cylinder surface which is just under the thin free surface layer covering
the cylinder top. (When it becomes thin, this layer of fluid effectively moves with
the cylinder, and its topmost point stagnates in that frame of reference. Presumably
surface tension effects then become important in uncovering the top of the cylinder
so that it can emerge from the fluid, but we have not included them here.) This neg-
ative pressure effect was also calculated by Greenhow (1988), and is thought to give
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Figure 2. Free-surface disturbance due to a cylinder impulsively started with constant upwards
velocity in initially calm water, for dimensionless times (T = Ut/d); (a) T = 0.4 and (b) T = 0.6.
The dimensionless parameters are cylinder radius = 0.8 and Froude number = 0.39. The series
expansion results of Tyvand & Miloh are shown as solid lines, numerical results are shown
dashed.
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Figure 3. As for figure 2, but with downwards motion, for (a) T = 0.4 and (b)
T = 1.0411 . . . 1.5264 in steps of 0.0347 (numerical results only).

rise to a type of Rayleigh–Taylor instability and to the rapid violent breaking seen in
the photographs of Greenhow & Lin (1983). Despite repeated attempts with other
spatial and temporal discretizations, no way could be found to continue the com-
putations and we therefore conclude that such a breakdown is physical rather than
numerical. A new feature of Moyo’s (1997) calculations is that the same effect also
takes place on the trailing side of the obliquely moving cylinder moving upwards
at 45◦. Such an effect therefore limits, in principle, the ability of purely potential
theory to follow the exit beyond the time of breaking. The situation for horizontal
motion is different, however; here the pressure within the water remains positive, and
the calculations can either be continued indefinitely, or, for larger cylinder velocities,
until a well developed breaking wave arises behind the cylinder (see Hepworth 1991;
Greenhow 1993).

We are now able to specify approximately the time domain of applicability of the
expansion method. It seems quite insensitive to the value of ε (here chosen up to a
value of 0.95) and to the direction of cylinder motion, but increases with increasing
Fr. Thus for excellent or good agreement between the free surface profiles with
Fr = 0.39 one must have T < 0.4, whilst for Fr = 0.78 one must have T < 0.6.
Beyond these times the comparison becomes inaccurate and then meaningless.
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The second major objective of this paper is to consider the free surface motions
caused by a cylinder as it moves downwards through the free surface and this is
explored in the next section. It is, however, useful to explore the downward motion
of an already submerged cylinder, in order to highlight any numerical problems that
might arise in the more complicated problem of cylinder engulfment. Comparison
with the Tyvand & Miloh expansion method is possible in this case also, see figure 3.
Again we are here largely concerned with the free surface deformations since the
pressures and forces are dominated by hydrostatics, except when the depression
caused by the sinking cylinder rapidly fills and results in a sort of overdriven standing
wave which breaks symmetrically outwards, see figure 3. This is caused by an increase
of pressure below that portion of free surface, and we see precisely that effect on the
top of the cylinder (see Moyo (1997) for details). In the early stages of the motion
(T < 0.4 at Fr = 0.38) we again have good agreement with the Tyvand & Miloh
method, in particular the numerical results support the prediction of asymmetry
between free-surface deformations resulting from upwards and downwards cylinder
motion, which arises in the analytical results because the second-order contribution
η2 acts upwards in either case, whereas the first-order contribution changes sign. This
makes the trough in downwards motion less deep than the crest in the corresponding
upwards motion. Again the numerical results can proceed in time significantly beyond
the point when the analytical results become unreliable; for low-speed motion which
does not result in breaking, the numerics may be continued indefinitely, allowing
wave propagation outwards from the region near the cylinder.

For low-speed motion, however, a possible numerical problem is that of high-
frequency waves being created from the impulsive cylinder motion; the situation is
qualitatively similar to that of the impulsive pressure applied in the Cauchy–Poisson
problem, see Lamb (1932). The slowly moving high-frequency waves are left behind
the larger longer waves, and they appear to trigger numerical instabilities in our
scheme if they are not smoothed. Nevertheless they have no practical effect on either
the overall wave motion, nor on the hydrostatically dominated pressures on the
already deeply submerged cylinder.

4. Free-surface deformations caused by submerging cylinders

We now look at the complete engulfment of the cylinder as it passes below the
surface. The photographs of Greenhow & Lin (1983) are for the high-speed entry
of a cylinder dropped from above the free surface; this causes rapidly moving spray
jets which rise almost to the original drop height of the cylinder and then break up,
presumably under the action of surface tension. Greenhow (1988) achieved partial
success in following these jets, but could only follow the closure of the free surface over
the top of the cylinder in a much less extreme case when the cylinder started from
a half-submerged position in initially calm water. Inflow over the top of the cylinder
caused the program to break down when the two layers of inrushing fluid (from left
and right) impacted; see figure 4 for the present calculations. Although it is possible
in principle to follow this symmetric situation further by placing a thin wall above
the cylinder on the central plane of symmetry, so that the body+wall never actually
submerges, no success was achieved. With hindsight numerical problems might have
been expected since when a free-surface particle arrives at the intersection of the
cylinder and wall, it will need to satisfy both the wall and cylinder body-boundary
conditions, and thus be moving downwards initially, rather than rising up the wall as

Phil. Trans. R. Soc. Lond. A (1997)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Water entry and exit of horizontal circular cylinders 559

1

–1

–3
–3 0 3

1

–1

–3
–3 0 3

1

–1

–3
–3 0 3

(a) (b)

(c)

Figure 4. Vertical forced engulfment of a cylinder starting from rest half-submerged in initially
calm water at Froude number = 0.31 for dimensionless times (T =

√
a/g); (a) T = 1.82, 1.96

and 2.1; (b) T = 4.552 showing the cavity and (c) T = 4.75 showing the start of jet formation.

a jet. Another problem is that this approach is not possible for oblique entry where
no symmetry exists.

We here adopt a different approach to follow the flow, using the surface-piercing
program initially and then swapping to the submerged program just as the body is
totally engulfed when the simply connected fluid region becomes doubly connected.
The situation is very similar to that of a collapsing bubble being threaded by a fast
internal jet considered by Best (1993), see also Zhang et al. (1993). It should be
noted that the values of φ on the left and right impacting free surfaces do not match
immediately before impact for oblique entry, and its normal derivative does not match
even for symmetric vertical entry (since the free surfaces are moving towards each
other). Subject to some plausible assumptions concerning the integrability of the
energy of the jet flow created immediately after impact, Best proves some important
results, as follows.

(i) The free surface velocity potential away from the impacting surfaces is unaf-
fected during the time of the impact; on the cylinder surface this may not be true in
general, but we do not need to know the value of this jump a priori in the present
numerical scheme.

(ii) The discontinuity across the impact surface of the tangential components of
velocity before and after impact persists unaffected by the impact; in general this
would create a vortex sheet and possible fluid rotation. In the present case, we assume
the impact surface to lie approximately normal to the cylinder surface, being between
the two inrushing very thin layers of fluid which are moving with the cylinder, so
that their tangential velocity components along the impact surface will match.
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(iii) The normal components of velocity across the impact surface, unequal before
impact, must match afterwards.

(iv) Any discontinuity in velocity potential across the impact surface must persist,
manifesting itself in circulation around the cylinder. In the present case, this will
occur for oblique cylinder motion.

(v) The kinetic energy of the fluid will be conserved only in the case where the
impact surface size shrinks to a point.

Point (iv) requires a branch cut in the analytic-function description of the flow.
This is explicitly included in the submerged program, which can then continue cal-
culations using the free-surface position and velocity potential as initial conditions.
It is, of course, not possible to treat exactly the details of the impacting inrushing
flows using the present approach; indeed compressibility effects may be needed. We
assume impact occurs at a single point only, rather than across a surface, but the
immediate resulting flow is unclear. Therefore a modification is needed to remove
the two intersection points from the body by averaging over the positions and ve-
locity potentials of the next nearest points. Other local collocation points were also
added where needed (i.e. directly above the top of the cylinder since the inflow phase
stretches out the surface points) by the same method; see Moyo (1997) for details.
This has been shown to affect the flow only locally and only for a short time, so that
the development of the subsequent flow is physically acceptable.

The forced motion of a cylinder, initially half-submerged in calm water, gives rise
to extremely interesting free-surface deformations, see figure 4. A rapid inflow occurs
over the cylinder top as it submerges. There is then a remarkably nearly constant
hydrodynamic force acting upwards on the cylinder for a long period after the cylin-
der submerges. As mentioned above, the cylinder pressures, forces and dynamics
are quite insensitive to the detailed motion of the free surface, especially the jets
described below (except when the cylinder top is still very close to the free sur-
face). Nevertheless it is still important to obtain accurate free surface calculations
since fast moving jets appear, which, if not properly resolved, can lead to numerical
breakdown. In the early stages after engulfment, the situation is qualitatively simi-
lar to the calculations of the collision of two solitary waves calculated by Cooker &
Peregrine (1992). In their case the plane of symmetry represented a seawall, whereas
in ours, the top of the cylinder might be thought of as giving the locally horizontal
seabed, which, however, is moving downwards. Cooker & Peregrine’s calculations also
show cavity-like depressions at the seawall which rapidly ‘flip through’ to give a fast
moving upwards jet of the type we see here in the last of figure 4. This phenomenon
has also been photographed by Hattori et al. (1994). Following this jet requires very
small time steps (at least an order of magnitude smaller than those used during the
engulfment stage) and/or smoothing. We here adopt a procedure similar to that of
Zhao & Faltinsen (1993) who remove spray jets occurring during wedge entry; details
of when this is done may be found in Moyo (1997). It should be noted that the jets,
being very thin, cannot support significant pressure gradients and their removal does
not affect the surrounding fluid motion; although jet removal does slightly violate
mass and energy conservation, the effect is also very small. The removal of the jet,
whilst done primarily for numerical convenience, may also be necessary physically
when the jet starts to fall; similar calculations with standing waves (see Srokosz
1981; Greenhow 1982), which support Penney & Price’s (1952) conjecture that the
sharpest stable standing-wave crest has an included angle of 90◦, which is far larger
than that of the thin jets created here. It follows that such jets will break-up during
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Figure 5. As for figure 4 but for 45◦ forced engulfment of a cylinder starting from rest
half-submerged in initially calm water at a Froude number of 0.31 for (a) T = 3.36 and 3.558
and (b) T = 5.80 . . . 5.926 in steps of 0.042.

their downwards motion, and this needs to be smoothed out or inhibited so that
the calculations can continue to the wave propagation stage (not shown here). For
certain free cylinder motion cases, the waves break symmetrically as two spilling
breakers, and this finally stops the calculation. However, with less energetic fluid
motion resulting from slower cylinder motion, non-breaking propagating waves may
be possible so that the calculations could continue for much longer.

Figure 5 shows a case of forced entry at 45◦. (For entry angles of 30◦ and 60◦, at
various Froude numbers, see Moyo (1997)). For low speed, the free surface stays fairly
flat except for the very thin jet caused by the impacting fluid layers, associated with
a high pressure region on the cylinder surface immediately below it. We do not claim
that the calculation of the jet itself is accurate here; in reality the jet will quickly
break up under the action of surface tension, but we again note that its details
have no significance for the rest of the flow. Accordingly, for the medium speed
calculations of figure 5, the jet is also removed, and the free surface is occasionally
smoothed; see Moyo (1997) for figures and numerical details. This procedure allows
the time-stepping to continue until the cylinder is rather deeply submerged, when the
entire elevated region of the free surface starts to become unstable, causing numerical
breakdown and global features such as the cylinder forces to become significantly
affected. Accordingly we have not continued calculations beyond this time.

5. Conclusion

The calculations presented here for submerged cylinder forced motion show good
agreement with the analytical time-expansion results of Tyvand & Miloh (1995a, b)
for small time, after which interesting new features such as spontaneous breaking,
high-frequency waves and outgoing breaking waves may arise. The situation, which
contains three free parameters (depth-based Froude number, ratio of radius to initial
depth of submergence and direction of motion) is complex, but we have covered
enough of the parameter space to give an indication of how small time has to be for
the expansion results to be valid. The study of downwards motion provided useful
insights into results for the engulfment problem.

We also describe the forced engulfment of a vertically moving cylinder. The free
surface displacement may be violent after the inrushing layers of water on top of the
cylinder meet, creating a rapidly filling cavity and fast upwards moving jets. Oblique
entry has also been considered.
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